Seam Welding

Questions and Answers

To address this question we will assume that we are making a liquid tight seam weld. In this process the welds overlap as the weld wheels roll forward. In a seam weld the process current is developed to allow for shunting current through the trailing welds which have already been made.

This part has tack/spot welds occasionally to hold the two surfaces in place. When the weld wheels approach one of these tack/spot welds the weld conditions change. As the wheel approaches, increasing shunting current can now travel forward through the parent material and the tack/spot weld. This forward shunting path is not part of the normal current allowance. This portion of the current is no longer passing through the intended seam weld. Our seam weld will be cooler because less current went through the desired seam weld. This might lead to the seam weld decreasing in size and possible failure to meet specification.

The best document for troubleshooting a seam welder would be:


This document explains the importance of the various aspects of a proper installation. These installation guides give you many points to troubleshoot on an operating machine.

It also lists many undesirable weld results and what may be causing them.
It has a trouble shooting section. What to look for and where to go to correct the problem.

A seam welder is a resistance welder with circular rotating electrodes and flood cooling. All other factors are the same. The weld head is different in that it acts as a bearing and conductor. Wear of the bearings and sliding contacts is common over time. The conductive grease in the weld head normally needs to be replaced at the same time the weld head is overhauled.

Maintenance of the weld head should be left to seam welder manufacturers.


I am going to assume that this question is being directed to the flood cooling water used in the seam welding process. This water may come from a cooling tower system and returns to the same system.  Normally it is treated in for particulates and the chemistry is evaluated and adjusted accordingly. This tower water will be reused over and over again.

More likely this flood water is on an independent system with a tap water make up which flows into a catch system to be recirculated on the seam welder itself for some period of time. The water itself is not harmful. It only is harmful from what it comes in contact with during seam welding. There is usually a considerable amount of steam, maybe smoke and some sparks possible. Some metallics can get into the water and sink to the bottom of the catch tank. The oils and other debris on the metal will change the water chemistry. The water will pick up what it is in contact with. It can be used over and over again for industrial cooling in the seam welding process. Make up water will be required to cover steam loss and evaporation.

In any long term reuse of this water in a plant water recirculating system or a dedicated seam welder recirculating system, the water should at the minimum be filtered for particulates and tested for pH, conductivity, and total dissolved solids.

Is used seam welding cooling water considered Potable water (Safe to Drink)?

Assuming the two workpieces being seam welded are the same, then two different diameter wheels will make contact with the part over two different surface areas. If the surface areas are different, the side with the larger area could run cooler than the other and the nugget will tend to form in the other half of the part with the smaller surface area. Therefore the smaller wheel with the same face geometry will run hotter than the larger diameter wheel. Depending upon the part being run and the process this diameter differential may or may not be enough that action needs to be taken. There are many factors going on during a seam weld that may minimize this variation.

If the diameters should be addressed to correct the issue, then this becomes a simple case of heat balance. The large wheel side is too cold or the small wheel side is too hot. One can address this from either side. Remember if you are making changes in weld faces, it is best to change just one at a time and measure results before making additional changes.

Coated materials have an increased tendency to stick to and react with the surface of the seam welding wheel because the coatings melt at relatively low temperatures. Aluminized and galvanized coated steels are very common in industry and can lead to a buildup on the surface of the seam welding wheels. This buildup can raise the contact resistance between the wheel and the part surface. You cannot change the melting point of the coating so you must dress the wheel to keep it clean and at the desired weld face size. The most common method is to use a knurl drive system. The knurl wheel cleans and reshapes the weld wheel back to near original dimensions. It also drives the rotation of the weld wheel and part movement. The knurl wheel cuts a knurl type pattern on the wheel surface and shaves the sides to maintain the original width. The knurl on the wheel surface ensures good contact with the part and prevents the wheel from slipping on the part. Sometimes a water stream is directed at the knurl area to remove loose weld and knurl product.

Have a Question?

Do you have a question that is not covered in our knowledgebase? Do you have questions regarding the above article? Click here to ask the professor.