What is AC resistance welding?

To answer this inquiry we will start with a previously published question and expand upon it.

      “WHAT IS THE DEFINITION OF RESISTANCE WELDING”

Per the definition of the Resistance Welding Manufacturers Alliance:

Definition of Resistance Welding

To expand upon this PRESSURE is provided by mechanical means of pneumatic or hydraulic cylinders, servos, cams and sometimes manually. Normally it is measured in pounds, kilos or equivalent. It is applied in sufficient amount to contain and control the weld to a specific desired area, before the current is applied. CURRENT is supplied by the control and transformer. The transformer does just that transforms relatively small current input from the buss to many thousand amperes needed for resistance welding at people safe low voltages. The control determines the amount of CURRENT and the TIME.

Heat is generated according to JOULES LAW.

Joules Law

The heat is generated by the current squared times the resistance multiplied by the time. It is the current flowing through the area to be joined for a length of time and the resistance at that joint which generates heat to make a joint. The force holds all of this together and forges the joint as it forms and cools down.

AC resistance welding would use AC current and transformers for the power in resistance welding. Most rocker arm and press welders have been manufactured with AC power supplies. The equipment can also be DC direct current. In the last thirty years MFDC mid frequency direct current is has become the go to equipment for automated robotic systems and many other applications.

There are many articles published in this forum about the advantages and disadvantages of the AC, DC and MFDC systems. One can find these by performing a search on the home page of this forum.

Reference: RWMA – Resistance Welding Manual 4th Edition

                                  

 

Have a Question?

Do you have a question that is not covered in our knowledgebase? Do you have questions regarding the above article? Click here to ask the professor.

Did you find this answer helpful?